Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression.
نویسندگان
چکیده
The DNA damage response comprises DNA repair, cell-cycle checkpoint control, and DNA damage-induced apoptosis that collectively promote genomic integrity and suppress tumorigenesis. Previously, we have shown that the Chk2 kinase functions independently of the Mre11 complex (Mre11, Rad50, and Nbs1) and ATM in apoptosis and suppresses tumorigenesis resulting from hypomorphic alleles of Mre11 or Nbs1. Based on this work, we have proposed that Chk2 limits the oncogenic potential of replication-associated DNA damage. Here we further address the role of Chk2 and damage-induced apoptosis in suppressing the oncogenic potential of chromosome breaks. We show that loss of Chk2 or a mutation in p53 (R172P), which selectively impairs its function in apoptosis, rescued the lethality of mice lacking Lig4, a ligase required for nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks in G0/G1. In contrast to Lig4(-/-)p53(-/-) mice, Lig4(-/-)Chk2(-/-) and Lig4(-/-)p53(R172P/R172P) mice were not prone to organ-specific, rapid tumorigenesis. Although the severe NHEJ deficiency of Lig4(-/-) was a less potent initiator of tumorigenesis in the p53(R172P/R172P) and Chk2(-/-) backgrounds, where p53 cell-cycle functions are largely intact, even mild defects in the intra-S and G2/M checkpoints caused by mutations in Nbs1 are sufficient to influence malignancy in p53(R172P/R172P) mice. We conclude that the oncogenic potential of double-strand breaks resulting from NHEJ deficiency is highly restricted by nonapoptotic functions of p53, such as the G1/S checkpoint or senescence, suggesting that the particular facets of the DNA damage response required for tumor suppression are dictated by the proliferative status of the tumor-initiating cell.
منابع مشابه
The Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملCell cycle and apoptosis: A review
Cancer is characterized by abnormally excessive cell proliferation. Cell proliferation, the process by which a cell grows and divides to produce two daughter cells. Each of these daughter cells divides to produce two new cells, steps that are called cell cycle. Meanwhile, apoptosis is a highly regulated process of cell death, which is involved not only in the development of shape and morphogene...
متن کاملTriolein from Coix lacryma-jobi Induces Cell Cycle Arrest Through p53/p21 Signaling Pathway
p53, a tumor suppressor protein, has important roles in DNA repair, cell cycle and apoptosis, is a one of the key events in cancer development. Coix lacryma-jobi seed has been used as a food and traditional medicine plant with anti-oxidant, anti-cancer and anti-diabetic effects. In currently research, we identified the most potent p53-increasing compound among 4 compounds (1 – 4) found in Coix ...
متن کاملp53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway
Activation of p53 in response to DNA damage is essential for tumor suppression. Although previous studies have emphasized the importance of p53-dependent cell cycle arrest and apoptosis for tumor suppression, recent studies have suggested that other areas of p53 regulation, such as metabolism and DNA damage repair (DDR), are also essential for p53-dependent tumor suppression. However, the intri...
متن کاملP-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats
Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 25 شماره
صفحات -
تاریخ انتشار 2012